Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.583
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Skin Res Technol ; 30(5): e13706, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38721854

RESUMO

BACKGROUND: The incidence rates of cutaneous squamous cell carcinoma (cSCC) and basal cell carcinoma (BCC) skin cancers are rising, while the current diagnostic process is time-consuming. We describe the development of a novel approach to high-throughput sampling of tissue lipids using electroporation-based biopsy, termed e-biopsy. We report on the ability of the e-biopsy technique to harvest large amounts of lipids from human skin samples. MATERIALS AND METHODS: Here, 168 lipids were reliably identified from 12 patients providing a total of 13 samples. The extracted lipids were profiled with ultra-performance liquid chromatography and tandem mass spectrometry (UPLC-MS-MS) providing cSCC, BCC, and healthy skin lipidomic profiles. RESULTS: Comparative analysis identified 27 differentially expressed lipids (p < 0.05). The general profile trend is low diglycerides in both cSCC and BCC, high phospholipids in BCC, and high lyso-phospholipids in cSCC compared to healthy skin tissue samples. CONCLUSION: The results contribute to the growing body of knowledge that can potentially lead to novel insights into these skin cancers and demonstrate the potential of the e-biopsy technique for the analysis of lipidomic profiles of human skin tissues.


Assuntos
Carcinoma Basocelular , Carcinoma de Células Escamosas , Eletroporação , Lipidômica , Neoplasias Cutâneas , Pele , Humanos , Carcinoma Basocelular/patologia , Carcinoma Basocelular/metabolismo , Carcinoma Basocelular/diagnóstico , Neoplasias Cutâneas/patologia , Neoplasias Cutâneas/metabolismo , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/química , Lipidômica/métodos , Biópsia , Pele/patologia , Pele/metabolismo , Pele/química , Feminino , Masculino , Eletroporação/métodos , Pessoa de Meia-Idade , Idoso , Lipídeos/análise , Espectrometria de Massas em Tandem/métodos
2.
Acta Derm Venereol ; 104: adv19678, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38712969

RESUMO

In electrochemotherapy, permeabilization of the cell membrane by electric pulses increases the anti-tumour effect of chemotherapeutics. In calcium electroporation, chemotherapy is replaced by calcium chloride with obvious benefits. This study explores the effect and underlying mechanisms of calcium electroporation on basal cell carcinomas using either high- or low-frequency electroporation. Low-risk primary basal cell carcinomas were treated in local anaesthesia with intratumoral calcium chloride followed by electroporation with high (167 kHz) or low (5 kHz) frequencies. Non-complete responders were retreated after 3 months. The primary endpoint was tumour response 3 months after last calcium electroporation. Plasma membrane calcium ATPase was examined in various cell lines as plasma membrane calcium ATPase levels have been associated with calcium electroporation efficacy. Twenty-two out of 25 included patients complete the study and 7 of these (32%) achieved complete response at 3 months with no difference in efficacy between high- and low-frequency pulses. High-frequency calcium electroporation was significantly less painful (p=0.03). Plasma membrane calcium ATPase was increased 16-32-fold in basal cell carcinoma cell lines compared with 4 other cancer cell lines. Calcium electroporation for low-risk basal cell carcinomas does not fulfil the requirements of a new dermatological basal cell carcinoma treatment but may be useful as adjuvant treatment to surgery in more advanced basal cell carcinomas. The elevated PMCA levels in basal cell carcinomas may contribute to low efficacy.


Assuntos
Carcinoma Basocelular , Eletroquimioterapia , Neoplasias Cutâneas , Humanos , Carcinoma Basocelular/patologia , Carcinoma Basocelular/terapia , Neoplasias Cutâneas/patologia , Neoplasias Cutâneas/terapia , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Resultado do Tratamento , Eletroquimioterapia/métodos , Linhagem Celular Tumoral , Cloreto de Cálcio/administração & dosagem , Idoso de 80 Anos ou mais , ATPases Transportadoras de Cálcio da Membrana Plasmática/metabolismo , Fatores de Tempo , Eletroporação
3.
Front Immunol ; 15: 1352821, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38711517

RESUMO

Pancreatic cancer is a significant cause of cancer-related mortality and often presents with limited treatment options. Pancreatic tumors are also notorious for their immunosuppressive microenvironment. Irreversible electroporation (IRE) is a non-thermal tumor ablation modality that employs high-voltage microsecond pulses to transiently permeabilize cell membranes, ultimately inducing cell death. However, the understanding of IRE's impact beyond the initiation of focal cell death in tumor tissue remains limited. In this study, we demonstrate that IRE triggers a unique mix of cell death pathways and orchestrates a shift in the local tumor microenvironment driven, in part, by reducing the myeloid-derived suppressor cell (MDSC) and regulatory T cell populations and increasing cytotoxic T lymphocytes and neutrophils. We further show that IRE drives induce cell cycle arrest at the G0/G1 phase in vitro and promote inflammatory cell death pathways consistent with pyroptosis and programmed necrosis in vivo. IRE-treated mice exhibited a substantial extension in progression-free survival. However, within a span of 14 days, the tumor immune cell populations reverted to their pre-treatment composition, which resulted in an attenuation of the systemic immune response targeting contralateral tumors and ultimately resulting in tumor regrowth. Mechanistically, we show that IRE augments IFN- Î³ signaling, resulting in the up-regulation of the PD-L1 checkpoint in pancreatic cancer cells. Together, these findings shed light on potential mechanisms of tumor regrowth following IRE treatment and offer insights into co-therapeutic targets to improve treatment strategies.


Assuntos
Modelos Animais de Doenças , Eletroporação , Neoplasias Pancreáticas , Microambiente Tumoral , Animais , Neoplasias Pancreáticas/imunologia , Neoplasias Pancreáticas/terapia , Neoplasias Pancreáticas/patologia , Microambiente Tumoral/imunologia , Camundongos , Linhagem Celular Tumoral , Células Supressoras Mieloides/imunologia , Camundongos Endogâmicos C57BL , Humanos , Linfócitos T Reguladores/imunologia , Feminino
4.
Hepatol Commun ; 8(5)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38668730

RESUMO

BACKGROUND: We previously demonstrated the successful use of in vivo CRISPR gene editing to delete 4-hydroxyphenylpyruvate dioxygenase (HPD) to rescue mice deficient in fumarylacetoacetate hydrolase (FAH), a disorder known as hereditary tyrosinemia type 1 (HT1). The aim of this study was to develop an ex vivo gene-editing protocol and apply it as a cell therapy for HT1. METHODS: We isolated hepatocytes from wild-type (C57BL/6J) and Fah-/- mice and then used an optimized electroporation protocol to deliver Hpd-targeting CRISPR-Cas9 ribonucleoproteins into hepatocytes. Next, hepatocytes were transiently incubated in cytokine recovery media formulated to block apoptosis, followed by splenic injection into recipient Fah-/- mice. RESULTS: We observed robust engraftment and expansion of transplanted gene-edited hepatocytes from wild-type donors in the livers of recipient mice when transient incubation with our cytokine recovery media was used after electroporation and negligible engraftment without the media (mean: 46.8% and 0.83%, respectively; p=0.0025). Thus, the cytokine recovery medium was critical to our electroporation protocol. When hepatocytes from Fah-/- mice were used as donors for transplantation, we observed 35% and 28% engraftment for Hpd-Cas9 ribonucleoproteins and Cas9 mRNA, respectively. Tyrosine, phenylalanine, and biochemical markers of liver injury normalized in both Hpd-targeting Cas9 ribonucleoprotein and mRNA groups independent of induced inhibition of Hpd through nitisinone, indicating correction of disease indicators in Fah-/- mice. CONCLUSIONS: The successful liver cell therapy for HT1 validates our protocol and, despite the known growth advantage of HT1, showcases ex vivo gene editing using electroporation in combination with liver cell therapy to cure a disease model. These advancements underscore the potential impacts of electroporation combined with transplantation as a cell therapy.


Assuntos
Edição de Genes , Hepatócitos , Hidrolases , Camundongos Endogâmicos C57BL , Tirosinemias , Animais , Tirosinemias/terapia , Tirosinemias/genética , Edição de Genes/métodos , Camundongos , Hepatócitos/transplante , Hepatócitos/metabolismo , Hidrolases/genética , Terapia Baseada em Transplante de Células e Tecidos/métodos , Sistemas CRISPR-Cas , Eletroporação/métodos , Camundongos Knockout , 4-Hidroxifenilpiruvato Dioxigenase/genética , Modelos Animais de Doenças , Cicloexanonas , Nitrobenzoatos
5.
Methods Mol Biol ; 2794: 187-200, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38630230

RESUMO

In utero electroporation (IUE) enables labeling and manipulating specific types of cells by introducing DNA plasmids with desired promoters. After the surgery, mouse brains are fixed at any stage and analyzed after staining using specific antibodies. Here, we describe the flow of the IUE experiment from the preparation to microscopic observations.


Assuntos
Eletroporação , Neocórtex , Animais , Camundongos , Diferenciação Celular , Manejo de Espécimes , Anticorpos
6.
J Vis Exp ; (205)2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38557598

RESUMO

Genome editing technology is widely used to produce genetically modified animals, including rats. Cytoplasmic or pronuclear injection of DNA repair templates and CRISPR-Cas reagents is the most common delivery method into embryos. However, this type of micromanipulation necessitates access to specialized equipment, is laborious, and requires a certain level of technical skill. Moreover, microinjection techniques often result in lower embryo survival due to the mechanical stress on the embryo. In this protocol, we developed an optimized method to deliver large DNA repair templates to work in conjunction with CRISPR-Cas9 genome editing without the need for microinjection. This protocol combines AAV-mediated DNA delivery of single-stranded DNA donor templates along with the delivery of CRISPR-Cas9 ribonucleoprotein (RNP) by electroporation to modify 2-cell embryos. Using this novel strategy, we have successfully produced targeted knock-in rat models carrying insertion of DNA sequences from 1.2 to 3.0 kb in size with efficiencies between 42% and 90%.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Ratos , Animais , Edição de Genes/métodos , Dependovirus/genética , Eletroporação/métodos , Zigoto
7.
Int J Mol Sci ; 25(8)2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38673901

RESUMO

Irreversible electroporation (IRE) is a prominent non-thermal ablation method widely employed in clinical settings for the focal ablation therapy of solid tumors. Utilizing high-voltage, short-duration electric pulses, IRE induces perforation defects in the cell membrane, leading to apoptotic cell death. Despite the promise of irreversible electroporation (IRE) in clinical applications, it faces challenges concerning the coverage of target tissues for ablation, particularly when compared to other thermal ablation therapies such as radiofrequency ablation, microwave ablation, and cryoablation. This study aims to investigate the induced hyperthermal effect of IRE by applying a polydopamine nanoparticle (Dopa NP) coating on the electrode. We hypothesize that the induced hyperthermal effect enhances the therapeutic efficacy of IRE for cancer ablation. First, we observed the hyperthermal effect of IRE using Dopa NP-coated electrodes in hydrogel phantom models and then moved to in vivo models. In particular, in in vivo animal studies, the IRE treatment of rabbit hepatic lobes with Dopa NP-coated electrodes exhibited a two-fold higher increase in temperature (ΔT) compared to non-coated electrodes. Through a comprehensive analysis, we found that IRE treatment with Dopa NP-coated electrodes displayed the typical histological signatures of hyperthermal ablation, including the disruption of the hepatic cord and lobular structure, as well as the infiltration of erythrocytes. These findings unequivocally highlight the combined efficacy of IRE with Dopa NPs for electroporation and the hyperthermal ablation of target cancer tissues.


Assuntos
Eletrodos , Eletroporação , Indóis , Nanopartículas , Polímeros , Indóis/química , Indóis/farmacologia , Animais , Polímeros/química , Nanopartículas/química , Eletroporação/métodos , Coelhos , Fígado/cirurgia , Fígado/efeitos dos fármacos , Hipertermia Induzida/métodos
8.
Sci Rep ; 14(1): 7962, 2024 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-38575628

RESUMO

The underlying study was carried out aiming at transdermal drug delivery (TDD) of Goniothalamus macrophyllus as sono-photo-sensitizer (SPS) using microneedle (MN) arrays with iontophoresis (MN-IP), electroporation (MN-EP) in conjunction with applying photodynamic therapy (PDT), sonodynamic therapy (SDT) and sono-photodynamic therapy (SPDT) as an up-to-date activated cancer treatment modality. Study was conducted on 120 male Swiss Albino mice, inoculated with Ehrlich ascites carcinoma (EAC) divided into 9 groups. We employed three different arrays of MN electrodes were used (parallel, triangular, and circular), EP, IP with different volts (6, 9, 12 V), an infrared laser and an ultrasound (pulsed and continuous wave) as our two energy sources. Results revealed that parallel 6 V TDD@MN@IP@EP can be used as effective delivery system for G. macrophyllus from skin directly to target EAC cells. In addition MN@IP@EP@TDD G. macrophyllus is a potential SPS for SPDT treatment of EAC. With respect to normal control mice and as opposed to the EAC untreated control mice, MN@EP@IP TDD G. macrophyllus in the laser, ultrasound, and combination activated groups showed a significant increase in the antioxidant markers TAC level and the GST, GR, Catalase, and SOD activities, while decrease in lipid peroxidation oxidative stress parameter MDA levels. In addition significantly increased apoptotic genes expressions (p53, caspase (3, 9), Bax, and TNF alpha) and on the other hand decreased anti- apoptotic (Bcl-2) and angiogenic (VEGF) genes expressions. Moreover significantly ameliorate liver and kidney function decreasing ALT, AST, urea and creatinine respectively. Furthermore MN@IP@EP@TDD G. macrophyllus combined with SPDT was very effective at reducing the growth of tumors and even causing cell death according to microscopic H&E stain results. This process may be related to a sono- and/or photochemical activation mechanism. According to the findings, MN@IP@EP@TDD G. macrophyllus has a lot of potential as a novel, efficient delivery method that in combination with infrared laser and ultrasound activation SPDT demonstrated promising anticancer impact for treating cancer.


Assuntos
Carcinoma , Goniothalamus , Masculino , Animais , Camundongos , Iontoforese , Administração Cutânea , Pele/metabolismo , Eletroporação/métodos , Carcinoma/metabolismo
10.
Sci Rep ; 14(1): 9902, 2024 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-38688960

RESUMO

Irreversible electroporation (IRE) is a non-thermal ablation technique for local tumor treatment known to be influenced by pulse duration and voltage settings, affecting its efficacy. This study aims to investigate the effects of bipolar IRE with different pulse durations in a prostate cancer mouse model. The therapeutic effectiveness was assessed with in vitro cell experiments, in vivo tumor volume changes with magnetic resonance imaging, and gross and histological analysis in a mouse model. The tumor volume continuously decreased over time in all IRE-treated groups. The tumor volume changes, necroptosis (%), necrosis (%), the degree of TUNEL-positive cell expression, and ROS1-positive cell (%) in the long pulse duration-treated groups (300 µs) were significantly increased compared to the short pulse duration-treated groups (100 µs) (all p < 0.001). The bipolar IRE with a relatively long pulse duration at the same voltage significantly increased IRE-induced cell death in a prostate cancer mouse model.


Assuntos
Modelos Animais de Doenças , Eletroporação , Neoplasias da Próstata , Animais , Masculino , Neoplasias da Próstata/patologia , Neoplasias da Próstata/terapia , Camundongos , Eletroporação/métodos , Linhagem Celular Tumoral , Humanos , Imageamento por Ressonância Magnética , Carga Tumoral , Apoptose
11.
Int J Mol Sci ; 25(6)2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38542122

RESUMO

Gene electrotransfer (GET) of plasmids encoding interleukin 12 (IL-12) has already been used for the treatment of various types of tumors in human oncology and as an adjuvant in DNA vaccines. In recent years, we have developed a plasmid encoding human IL-12 (phIL12) that is currently in a phase I clinical study. The aim was to confirm the results of a non-clinical study in mice on pharmacokinetic characteristics and safety in a porcine model that better resembled human skin. The GET of phIL12 in the skin was performed on nine pigs using different concentrations of plasmid phIL12 and invasive (needle) or noninvasive (plate) types of electrodes. The results of our study demonstrate that the GET of phIL-12 with needle electrodes induced the highest expression of IL-12 at the protein level on day 7 after the procedure. The plasmid was distributed to all tested organs; however, its amount decreased over time and was at a minimum 28 days after GET. Based on plasmid copy number and expression results, together with blood analysis, we showed that IL-12 GET is safe in a porcine animal model. Furthermore, we demonstrated that pigs are a valuable model for human gene therapy safety studies.


Assuntos
Técnicas de Transferência de Genes , Interleucina-12 , Humanos , Animais , Camundongos , Suínos , Interleucina-12/genética , Interleucina-12/metabolismo , Transfecção , Terapia Genética/métodos , DNA/metabolismo , Plasmídeos/genética , Vacinação , Eletroporação/métodos
12.
Cancer Med ; 13(5): e7035, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38491833

RESUMO

BACKGROUND: Malignant liver tumors seriously endanger human health. Among different therapeutic approaches, high-frequency irreversible electroporation (H-FIRE) is a recently emerging tumor ablation technique. The objective of this study was to evaluate the feasibility and safety of ultrasound-guided percutaneous H-FIRE using four electrode needles in porcine livers. METHODS: Twelve experimental pigs underwent percutaneous H-FIRE ablation using a compound steep-pulse therapeutic device. Liver tissues adjacent to the gallbladder, blood vessels, and bile ducts were selected as the ablation targets. Pigs were randomly divided into three groups: (1) immediately after ablation (N = 4), (2) 2 days after ablation (N = 4), and (3) 7 days after ablation (N = 4). Blood routine, liver and kidney function, and myocardial enzyme levels were measured before and after ablation. Ultrasound, contrast-enhanced ultrasound (CEUS), contrast-enhanced magnetic resonance imaging (MRI), and hematoxylin-eosin staining were performed to evaluate the ablation performance. RESULTS: Ultrasound-guided percutaneous H-FIRE ablations using four electrode needles were successfully performed in all 12 experimental pigs. The general conditions of the pigs, including postoperative activities and feeding behaviors, were normal, with no significant changes compared with the preoperative conditions. The imaging features of ultrasound, CEUS, and MRI demonstrated no significant changes in the gallbladder walls, bile ducts, or blood vessels close to the ablation areas. Laboratory tests showed that liver function indices and myocardial enzymes increased temporarily after H-FIRE ablation, but decreased to normal levels at 7 days after ablation. Histopathological examinations of porcine liver specimens showed that this technique could effectively ablate the target areas without damaging the surrounding or internal vascular systems and gallbladder. CONCLUSIONS: This study demonstrated the feasibility and safety of ultrasound-guided percutaneous H-FIRE ablation in porcine livers in vivo, and proposed a four-needle method to optimize its clinical application.


Assuntos
Fígado , Ultrassonografia de Intervenção , Animais , Eletrodos , Eletroporação/métodos , Estudos de Viabilidade , Fígado/diagnóstico por imagem , Fígado/cirurgia , Suínos
13.
Biomed Phys Eng Express ; 10(3)2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38479001

RESUMO

We present a numerical method for studying reversible electroporation on normal and cancerous cervical cells. This microdosimetry analysis builds on a unique approach for extracting contours of free and overlapping cervical cells in the cluster from the Extended Depth of Field (EDF) images. The algorithm used for extracting the contours is a joint optimization of multiple-level set function along with the Gaussian mixture model and Maximally Stable Extremal Regions. These contours are then exported to a multi-physics domain solver, where a variable frequency pulsed electric field is applied. The trans-Membrane voltage (TMV) developed across the cell membrane is computed using the Maxwell equation coupled with a statistical approach, employing the asymptotic Smoluchowski equation. The numerical model was validated by successful replication of existing experimental configurations that employed low-frequency uni-polar pulses on the overlapping cells to obtain reversible electroporation, wherein, several overlapping clumps of cervical cells were targeted. For high-frequency calculation, a combination of normal and cancerous cells is introduced to the computational domain. The cells are assumed to be dispersive and the Debye dispersion equation is used for further calculations. We also present the resulting strength-duration relationship for achieving the threshold value of electroporation between the normal and cancerous cervical cells due to their size and conductivity differences. The dye uptake modulation during the high-frequency electric field electroporation is further advocated by a mathematical model.


Assuntos
Eletricidade , Modelos Teóricos , Membrana Celular/metabolismo , Condutividade Elétrica , Eletroporação/métodos
14.
Lancet Gastroenterol Hepatol ; 9(5): 448-459, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38513683

RESUMO

BACKGROUND: Pancreatic ductal adenocarcinoma is an aggressive disease with a dismal prognosis. Stage III locally advanced pancreatic cancer is considered unresectable and current palliative chemotherapy regimens only modestly improve survival. Guidelines suggest chemoradiation or stereotactic ablative body radiotherapy (SABR) could be beneficial in certain circumstances. Other local treatments such as irreversible electroporation could enhance patient outcomes by extending survival while preserving quality of life. We aimed to compare the efficacy and safety of MRI-guided SABR versus CT-guided percutaneous irreversible electroporation following standard FOLFIRINOX chemotherapy. METHODS: CROSSFIRE was an open-label, randomised phase 2 superiority trial conducted at the Amsterdam University Medical Centre (Amsterdam, Netherlands). Eligible patients were aged 18 years or older with confirmed histological and radiological stage III locally advanced pancreatic cancer. The maximum tumour diameter was 5 cm and patients had to be pretreated with three to eight cycles of FOLFIRINOX. Patients were randomly assigned (1:1) to MRI-guided SABR (five fractions of 8 Gy delivered on non-consecutive days) or CT-guided percutaneous irreversible electroporation using a computer-generated variable block randomisation model. The primary endpoint was overall survival from randomisation, assessed in the intention-to-treat population. Safety was assessed in the per-protocol population. A prespecified interim futility analysis was done after inclusion of half the original sample size, with a conditional probability of less than 0·2 resulting in halting of the study. The trial was registered at ClinicalTrials.gov, NCT02791503. FINDINGS: Between May 1, 2016, and March 31, 2022, 68 patients were enrolled and randomly assigned to SABR (n=34) or irreversible electroporation (n=34), of whom 64 were treated according to protocol. Of the 68 participants, 36 (53%) were male and 32 (47%) were female, with a median age of 65 years (IQR 57-70). Median overall survival from randomisation was 16·1 months (95% CI 12·1-19·4) in the SABR group versus 12·5 months (10·9-17·0) in the irreversible electroporation group (hazard ratio [HR] 1·39 [95% CI 0·84-2·30]; p=0·21). The conditional probability to demonstrate superiority of either technique was 0·13; patient accrual was therefore stopped early for futility. 20 (63%) of 32 patients in the SABR group versus 19 (59%) of 32 patients in the irreversible electroporation group had adverse events (p=0·8) and five (16%) patients in the SABR group versus eight (25%) in the irreversible electroporation group had grade 3-5 adverse events (p=0·35). The most common grade 3-4 adverse events were cholangitis (two [6%] in the SABR group vs one [3%] in the irreversible electroporation group), abdominal pain (one [3%] vs two [6%]), and pancreatitis (none vs two [6%]). One (3%) patient in the SABR group and one (3%) in the irreversible electroporation group died from a treatment-related adverse event. INTERPRETATION: CROSSFIRE did not identify a difference in overall survival or incidence of adverse events between MRI-guided SABR and CT-guided percutaneous irreversible electroporation after FOLFIRINOX. Future studies should further assess the added value of local ablative treatment over chemotherapy alone. FUNDING: Adessium Foundation, AngioDynamics.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica , Neoplasias Pancreáticas , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Resultado do Tratamento , Neoplasias Pancreáticas/diagnóstico por imagem , Neoplasias Pancreáticas/radioterapia , Qualidade de Vida , Eletroporação , Imageamento por Ressonância Magnética , Tomografia Computadorizada por Raios X
15.
J Neurosci Methods ; 406: 110126, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38554786

RESUMO

BACKGROUND: Electroporation is an effective technique for genetic manipulation of cells, both in vitro and in vivo. In utero electroporation (IUE) is a special case, which represents a fine application of this technique to genetically modify specific tissues of embryos during prenatal development. Commercially available electroporators are expensive and not fully customizable. We have designed and produced an inexpensive, open-design, and customizable electroporator optimized for safe IUE. We introduce NeuroPorator. METHOD: We used off-the-shelf electrical parts, a single-board microcontroller, and a cheap data logger to build an open-design electroporator. We included a safety circuit to limit the applied electrical current to protect the embryos. We added full documentation, design files, and assembly instructions. RESULT: NeuroPorator output is on par with commercially available devices. Furthermore, the adjustable current limiter protects both the embryos and the uterus from overcurrent damage. A built-in data acquisition module provides real-time visualization and recordings of the actual voltage/current pulses applied to each embryo. Function of NeuroPorator has been demonstrated by inducing focal cortical dysplasia in mice. SIGNIFICANCE AND CONCLUSION: The simple and fully open design enables quick and cheap construction of the device and facilitates further customization. The features of NeuroPorator can accelerate the IUE technique implementation in any laboratory and speed up its learning curve.


Assuntos
Eletroporação , Técnicas de Transferência de Genes , Animais , Eletroporação/métodos , Eletroporação/instrumentação , Feminino , Camundongos , Técnicas de Transferência de Genes/instrumentação , Gravidez , Desenho de Equipamento , Útero , Embrião de Mamíferos
16.
Lab Chip ; 24(7): 1957-1964, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38353261

RESUMO

Electroporation (in which the permeability of a cell membrane is increased transiently by exposure to an appropriate electric field) has exhibited great potential of becoming an alternative to adeno-associated virus (AAV)-based retina gene delivery. Electroporation eliminates the safety concerns of employing exogenous viruses and exceeds the limit of AAV cargo size. Unfortunately, several concerns (e.g., relatively high electroporation voltage, poor surgical operability and a lack of spatial selectivity of retina tissue) have prevented electroporation from being approved for clinical application (or even clinical trials). In this study, a flexible micro-electrode array for retina electroporation (FERE) was developed for retina electroporation. A suitably shaped flexible substrate and well-placed micro-electrodes were designed to adapt to the retina curvature and generate an evenly distributed electric field on the retina with a significantly reduced electroporation voltage of 5 V. The FERE provided (for the first time) a capability of controlled gene delivery to the different structural layers of retina tissue by precise control of the distribution of the electrical field. After ensuring the surgical operability of the FERE on rabbit eyeballs, the FERE was verified to be capable of transfecting different layers of retina tissue with satisfactory efficiency and minimum damage. Our method bridges the technical gap between laboratory validation and clinical use of retina electroporation.


Assuntos
Eletroporação , Retina , Animais , Coelhos , Eletroporação/métodos , Eletrodos , Técnicas de Transferência de Genes , Transfecção
17.
Theriogenology ; 218: 111-118, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38320372

RESUMO

Genetically modified pigs play a critical role in mimicking human diseases, xenotransplantation, and the development of pigs resistant to viral diseases. The use of programmable endonucleases, including the CRISPR/Cas9 system, has revolutionized the generation of genetically modified pigs. This study evaluates the efficiency of electroporation of oocytes prior to fertilization in generating edited gene embryos for different models. For single gene editing, phospholipase C zeta (PLC ζ) and fused in sarcoma (FUS) genes were used, and the concentration of sgRNA and Cas9 complexes was optimized. The results showed that increasing the concentration resulted in higher mutation rates without affecting the blastocyst rate. Electroporation produced double knockouts for the TPC1/TPC2 genes with high efficiency (79 %). In addition, resistance to viral diseases such as PRRS and swine influenza was achieved by electroporation, allowing the generation of double knockout embryo pigs (63 %). The study also demonstrated the potential for multiple gene editing in a single step using electroporation, which is relevant for xenotransplantation. The technique resulted in the simultaneous mutation of 5 genes (GGTA1, B4GALNT2, pseudo B4GALNT2, CMAH and GHR). Overall, electroporation proved to be an efficient and versatile method to generate genetically modified embryonic pigs, offering significant advances in biomedical and agricultural research, xenotransplantation, and disease resistance. Electroporation led to the processing of numerous oocytes in a single session using less expensive equipment. We confirmed the generation of gene-edited porcine embryos for single, double, or quintuple genes simultaneously without altering embryo development to the blastocyst stage. The results provide valuable insights into the optimization of gene editing protocols for different models, opening new avenues for research and applications in this field.


Assuntos
Doenças dos Suínos , Viroses , Humanos , Animais , Suínos/genética , Animais Geneticamente Modificados , Sistemas CRISPR-Cas , RNA Guia de Sistemas CRISPR-Cas , Edição de Genes/veterinária , Edição de Genes/métodos , Fertilização in vitro/veterinária , Oócitos , Eletroporação/veterinária , Eletroporação/métodos , Viroses/veterinária , Doenças dos Suínos/genética
18.
Methods Mol Biol ; 2772: 391-405, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38411831

RESUMO

Transient gene expression in plant protoplasts facilitates the analysis of hybrid genes in a fast and reproducible manner. The technique is particularly powerful when studying basic conserved biochemical processes including de novo protein synthesis, modification, assembly, transport, and turnover. Unlike individual plants, protoplast suspensions can be divided into almost identical aliquots, allowing the analysis of independent variables with uncertainties restricted to minor pipetting errors/variations. Using the examples of protein secretion and ER retention, we describe the most advanced working practice of routinely preparing, electroporating, and analyzing Nicotiana benthamiana protoplasts. A single batch of electroporation-competent protoplasts permits up to 30 individual transfections. This is ideal to assess the influence of independent variables, such as point mutations, deletions or fusions, or the influence of a co-expressed effector gene in dose-response studies.


Assuntos
Nicotiana , Protoplastos , Nicotiana/genética , Transporte Biológico , Transporte Proteico , Eletroporação
19.
Mol Pharm ; 21(4): 1998-2011, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38412284

RESUMO

Pancreatic cancer is a deadly disease with a five-year overall survival rate of around 11%. Chemotherapy is a cornerstone in the treatment of this malignancy, but the intratumoral delivery of chemotherapy drugs is impaired by the highly fibrotic tumor-associated stroma. Irreversible electroporation (IRE) is an ablative technique for treating locally advanced pancreatic cancer. During a typical IRE procedure, high-intensity electric pulses are released to kill tumor cells through the irreversible disruption of the cytoplasm membranes. IRE also induces rapid tumor infiltration by neutrophils and offers an opportunity for neutrophil-mediated drug delivery. We herein showed that the IRE-induced neutrophil trafficking was facilitated by the upregulation of neutrophil chemotaxis and migration as well as the release of several chemoattractants. Doxorubicin-loaded bovine serum albumin nanoparticles were prepared and loaded into neutrophils at a ratio of 9.9 ± 1.2 to 11.7 ± 2.0 pg of doxorubicin per cell. The resultant formulation (NP@NEs) efficiently accumulated in the IRE-treated KPC-A377 murine pancreatic tumors with an uptake value of 10.7 ± 1.5 (percent of injected dose per gram of tissue, abbreviated as %ID/g) at 48 h after intravenous injection. In both Panc02 and KPC-A377 murine pancreatic tumor models, the combination of IRE + NP@NEs inhibited tumor growth more effectively than either monotherapy. The tumors treated with the combination also exhibited the lowest frequency of Ki67+ proliferating cells and the highest abundance of terminal deoxynucleotidyl transferase dUTP nick end labeling+ (TUNEL+) apoptotic cells among the experiment groups. Minimal treatment-associated toxicity was observed. Our findings suggest that neutrophil-mediated delivery of chemotherapy drugs is a useful tool to enhance the response of pancreatic cancer to IRE.


Assuntos
Neutrófilos , Neoplasias Pancreáticas , Humanos , Animais , Camundongos , Neoplasias Pancreáticas/patologia , Inflamação , Eletroporação/métodos , Doxorrubicina
20.
Cell Commun Signal ; 22(1): 118, 2024 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-38347539

RESUMO

BACKGROUND: Disruption of Ca2+ homeostasis after calcium electroporation (CaEP) in tumors has been shown to elicit an enhanced antitumor effect with varying impacts on healthy tissue, such as endothelium. Therefore, our study aimed to determine differences in Ca2+ kinetics and gene expression involved in the regulation of Ca2+ signaling and homeostasis, as well as effects of CaEP on cytoskeleton and adherens junctions of the established endothelial cell lines EA.hy926 and HMEC-1. METHODS: CaEP was performed on EA.hy926 and HMEC-1 cells with increasing Ca2+ concentrations. Viability after CaEP was assessed using Presto Blue, while the effect on cytoskeleton and adherens junctions was evaluated via immunofluorescence staining (F-actin, α-tubulin, VE-cadherin). Differences in intracellular Ca2+ regulation ([Ca2+]i) were determined with spectrofluorometric measurements using Fura-2-AM, exposing cells to DPBS, ionomycin, thapsigargin, ATP, bradykinin, angiotensin II, acetylcholine, LaCl3, and GdCl3. Molecular distinctions were identified by analyzing differentially expressed genes and pathways related to the cytoskeleton and Ca2+ signaling through RNA sequencing. RESULTS: EA.hy926 cells, at increasing Ca2+ concentrations, displayed higher CaEP susceptibility and lower survival than HMEC-1. Immunofluorescence confirmed CaEP-induced, time- and Ca2+-dependent morphological changes in EA.hy926's actin filaments, microtubules, and cell-cell junctions. Spectrofluorometric Ca2+ kinetics showed higher amplitudes in Ca2+ responses in EA.hy926 exposed to buffer, G protein coupled receptor agonists, bradykinin, and angiotensin II compared to HMEC-1. HMEC-1 exhibited significantly higher [Ca2+]i changes after ionomycin exposure, while responses to thapsigargin, ATP, and acetylcholine were similar in both cell lines. ATP without extracellular Ca2+ ions induced a significantly higher [Ca2+]i rise in EA.hy926, suggesting purinergic ionotropic P2X and metabotropic P2Y receptor activation. RNA-sequencing analysis showed significant differences in cytoskeleton- and Ca2+-related gene expression, highlighting upregulation of ORAI2, TRPC1, TRPM2, CNGA3, TRPM6, and downregulation of TRPV4 and TRPC4 in EA.hy926 versus HMEC-1. Moreover, KEGG analysis showed upregulated Ca2+ import and downregulated export genes in EA.hy926. CONCLUSIONS: Our finding show that significant differences in CaEP response and [Ca2+]i regulation exist between EA.hy926 and HMEC-1, which may be attributed to distinct transcriptomic profiles. EA.hy926, compared to HMEC-1, displayed higher susceptibility and sensitivity to [Ca2+]i changes, which may be linked to overexpression of Ca2+-related genes and an inability to mitigate changes in [Ca2+]i. The study offers a bioinformatic basis for selecting EC models based on research objectives.


Assuntos
Acetilcolina , Cálcio , Cálcio/metabolismo , Acetilcolina/metabolismo , Acetilcolina/farmacologia , Angiotensina II/farmacologia , Bradicinina/farmacologia , Ionomicina/metabolismo , Ionomicina/farmacologia , Tapsigargina/metabolismo , Linhagem Celular , Células Endoteliais/metabolismo , Endotélio Vascular/metabolismo , Perfilação da Expressão Gênica , Eletroporação , Trifosfato de Adenosina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA